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Abstract. Surface ozone, a major air pollutant with profound implications for human health, ecosystems, 16 

and climate, shows long-term trends shaped by both anthropogenic and climatic drivers. Here, we 17 

develop a machine learning-based approach – the Fixed Emission Approximation (FEA) – to disentangle 18 

the effects of meteorological variability and anthropogenic emissions on summertime ozone trends in 19 

China. We identify three distinct phases of ozone trends corresponding to clean air actions. 20 

Anthropogenic emissions drove a +23.2 ± 1.1 μg m⁻3 increase in summer maximum daily 8-hour average 21 

ozone during 2013–2017, followed by a −4.6 ± 1.5 μg m⁻3 decrease during 2018–2020. However, during 22 

2021–2023, extreme meteorological anomalies – including heatwaves and extended monsoon 23 

rainfall – emerged as key drivers of ozone variability. Satellite-derived formaldehyde-to-nitrogen 24 

dioxide ratios reveal widespread urban volatile organic compounds-limited regimes, with a shift toward 25 

nitrogen oxides-limited sensitivity under influence of heatwaves. Finally, we assess ozone trends under 26 

sustained climate warming from 1970 to 2023 based on the FEA framework. The results indicate a 27 

significant climate-driven increase in ozone levels across China's urban agglomerations, 28 

underscoring the amplifying role of climate change in ozone pollution. Together, these findings 29 

highlight the dual influence of anthropogenic and climatic factors on ozone pollution and emphasize 30 

the need for integrated strategies that couple emission mitigation with climate adaptation to 31 

effectively manage ozone risks in a warming world. 32 

  33 

https://doi.org/10.5194/egusphere-2025-4014
Preprint. Discussion started: 11 September 2025
c© Author(s) 2025. CC BY 4.0 License.



3 
 

1 Introduction 34 

Surface ozone (O3) is a critical air pollutant that poses significant threats to human health (Knowlton 35 

et al., 2004), ecosystems (Agathokleous et al., 2020), and climate (Fishman et al., 1979; Hauglustaine et 36 

al., 1994). It forms through complex photochemical reactions involving nitrogen oxides (NOx) and 37 

volatile organic compounds (VOCs) in the presence of sunlight (Jacob, 2000; Wang et al., 2017) 38 

exhibiting a nonlinear response to its precursors (Guo et al., 2023; Liu and Shi, 2021; Wang et al., 2023a). 39 

Controlling ozone pollution remains a global environmental challenge. In recent years, China has 40 

implemented a series of national clean air actions, most notably the Air Pollution Prevention and Control 41 

Action Plan (2013–2017) and the Three-Year Action Plan for Winning the Blue-Sky War (2018–2020) 42 

(Geng et al., 2024; Zhang et al., 2019; Zheng et al., 2018), that have markedly improved air quality, 43 

particularly by reducing fine particulate matter (PM2.5) (Geng et al., 2024; Zhang et al., 2019). However, 44 

surface ozone levels have continued to rise in many regions, raising concerns over the complex drivers 45 

of ozone trends and highlighting the need for scientific attribution to guide effective mitigation strategies 46 

(Li et al., 2019a; Liu et al., 2023; Wang et al., 2023a; Weng et al., 2022). 47 

Long-term ozone variability is jointly influenced by anthropogenic emissions and weather 48 

conditions as well as regional climate (Hallquist et al., 2016; Li et al., 2019b; Wang et al., 2022b). While 49 

emission controls directly regulate precursor abundance, climate change modulates ozone through 50 

chemical feedbacks, meteorological dynamics, and biosphere–atmosphere interactions (Ma and Yin, 51 

2021; Xue et al., 2020). Over the past century, global surface temperatures have increased by 52 

approximately 1.2 °C relative to the pre-industrial baseline (1850–1900), driven largely by human 53 

activity (Legg, 2021). In a warming world, extreme climate anomalies – such as heatwaves and persistent 54 

rainfall shifts – are expected to intensify (Diffenbaugh et al., 2017). These events are increasingly 55 

recognized as critical modulators of ozone variability through their impacts on photochemistry, vertical 56 

mixing, and precursor transport (Gao et al., 2023; Pu et al., 2017; Wang et al., 2022b). 57 

Quantifying the respective roles of anthropogenic emissions and meteorological variability in 58 

driving ozone trends is therefore essential for evaluating the effectiveness of clean air policies (Li et al., 59 

2019a; Liu et al., 2023). Previous studies have reported rapid increases in surface ozone concentrations 60 

in key Chinese regions – such as the Beijing–Tianjin–Hebei (BTH) and Yangtze River Delta (YRD) – 61 
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during the initial policy phase (2013 – 2017), with increases of approximately 28% and 18%, respectively 62 

(Chen et al., 2020; Li et al., 2019a; Liu et al., 2023). In contrast, a modest decline in ozone levels was 63 

observed during 2018 – 2020, largely attributed to emission reductions (Li et al., 2021; Liu and Wang, 64 

2020b; Wang et al., 2024b; Wang et al., 2023a). However, since 2021, observations indicate a renewed 65 

increase in ozone concentrations (Fig. S1). These fluctuations suggest oscillating trends over the past 66 

decade, the drivers of which remain poorly constrained. 67 

Two main approaches have been applied to attribute air pollution trends: chemical transport models 68 

(CTMs) (Li et al., 2021; Liu et al., 2023; Liu and Wang, 2020a) and data-driven statistical frameworks 69 

(Li et al., 2019a; Li et al., 2019b; Li et al., 2020). CTMs simulate atmospheric composition based on 70 

emission inventories, meteorological fields, and chemical mechanisms (Ivatt et al., 2022; Liu and Shi, 71 

2021; Liu et al., 2023; Ye et al., 2024). They allow attribution of trend components to emissions or 72 

meteorology, and can resolve sector-specific impacts. However, these models face challenges, including 73 

uncertainties and temporal lags in emission inventories. Statistical models, on the other hand, rely on 74 

observational datasets and predictor-response relationships without requiring explicit emissions or 75 

chemical schemes (Li et al., 2019a; Li et al., 2019b; Li et al., 2020; Zhai et al., 2019). With the growing 76 

availability of atmospheric big data, statistical and machine learning models have emerged as powerful 77 

tools for trend attribution (Dai et al., 2023; Grange et al., 2018; Vu et al., 2019; Zhang et al., 2025; Zheng 78 

et al., 2023). For instance, Grange et al. (2018) developed a random forest-based framework to isolate 79 

meteorological influences on particulate matter. Similarly, Wang et al. (2023a) used an enhanced 80 

XGBoost model to analyze spatial and temporal ozone patterns in China from 2010 to 2021, confirming 81 

that emission reductions played a key role in recent declines. Other recent efforts have extended such 82 

models to long-term assessments of air pollution drivers under climate change (Wang et al., 2022c). 83 

Here, we develop a novel machine learning-based framework – Fixed Emission Approximation 84 

(FEA) – to quantify the respective roles of anthropogenic emissions and meteorological conditions in 85 

shaping summertime surface ozone trends in China. Applying FEA to nationwide observational data from 86 

2013 to 2023, we identify three distinct phases of ozone evolution corresponding to major clean air 87 

actions and policy transitions. We further analyze short-term ozone anomalies associated with extreme 88 

weather events, such as the 2022 heatwave and seasonal monsoon rainfall. To characterize photochemical 89 

regimes, we integrate satellite-derived formaldehyde-to-nitrogen dioxide (HCHO/NO2, FNR) ratios from 90 
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Tropospheric Monitoring Instrument (TROPOMI), revealing spatiotemporal shifts in ozone formation 91 

sensitivity across China. Finally, we extend our FEA analysis to evaluate climate-driven ozone trends 92 

from 1970 to 2023, using historical meteorological reanalysis data. Together, these results provide a 93 

comprehensive picture of the anthropogenic and climatic forces shaping surface ozone dynamics in a 94 

rapidly warming and urbanizing China. 95 

2 Data and Methods 96 

2.1 Sampling site and instruments 97 

Hourly surface ozone concentration data were obtained from the National Environmental 98 

Monitoring Center of China and can be accessed through the open website https://air.cnemc.cn:18007/ 99 

(last accessed: May 20, 2024). Hourly meteorological data with a spatial resolution of 0.25° × 0.25° were 100 

sourced from the ERA5 reanalysis dataset provided by the European Centre for Medium-Range Weather 101 

Forecasts (ECMWF) and are available for download at https://cds.climate.copernicus.eu (last accessed: 102 

March 20, 2025). For detailed variables, refer to Table S1. The MDA8 ozone TAP dataset (Geng et al., 103 

2021) for 2013 and 2014 can be downloaded from http://tapdata.org (last accessed: May 20, 2024). The 104 

Tropospheric Monitoring Instrument (TROPOMI) on the Sentinel-5P satellite provides global continuous 105 

observation data for two indicators of O3 precursor substances: nitrogen dioxide (NO2) and formaldehyde 106 

(HCHO) concentrations (Lamsal et al., 2014; Shen et al., 2019). The spatial resolution of TROPOMI 107 

data is 1113.2 meters (approximately 0.009° in China) (Ren et al., 2022).  108 

2.2 Machine learning-based FEA approach 109 

In this study, we propose a machine learning-based FEA approach to assess the impacts of 110 

meteorological factors and anthropogenic emissions on the year-round variations in ozone concentrations. 111 

First, we construct a regression model using the random forest (RF) algorithm to relate ozone 112 

concentrations to meteorological parameters at various atmospheric heights and to regular emission 113 

surrogate parameters (i.e., time variables). The meteorological parameters include 18 distinct variables 114 

at different altitudes, while the emission surrogate parameters include the month and the hour of the day, 115 

these temporal predictors capture the effects of day-night cycles and workday patterns on air pollutant 116 
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concentrations, reflecting the long-term trends in pollutant behavior. The aforementioned variables have 117 

been used as typical emission surrogate input features in previous studies (Grange et al., 2018; Meng et 118 

al., 2025; Shi et al., 2021; Vu et al., 2019). Our modeling strategy involves building and predicting models 119 

for individual cities and for each year from 2015 to 2023. Due to the lack of available observational data 120 

for many cities in 2013 and 2014, we did not develop models for these two years. In our approach, 80% 121 

of the dataset is used for model training, while the remaining 20% is reserved for testing. We perform 122 

ten-fold cross-validation and assess model performance using seven statistical metrics, as listed in Table 123 

S2. 124 

Following the construction of the machine learning models for individual cities and years, we 125 

introduce the FEA approach. The key principle of FEA is the assumption that the total emissions of ozone 126 

precursors remain unchanged from the baseline year. Specifically, using the model trained on data from 127 

the baseline year (i) as a reference for anthropogenic emissions, we establish hourly-resolution models 128 

for the summer months (June to August) of the baseline year. These models are then applied to predict 129 

ozone concentrations under the meteorological conditions of the prediction year (j), while holding the 130 

emission levels constant at those of the baseline year (i). The difference between the predicted values and 131 

the observed values for the baseline year (i) represents the model residuals (𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖), as shown in Eq. (1). 132 

The difference in observed MDA8 ozone concentrations between two different prediction years (j1, j2) is 133 

driven by the differences in meteorological conditions (𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝑖𝑖(𝑗𝑗1,𝑗𝑗2) ) and anthropogenic emission 134 

controls (𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝑖𝑖(𝑗𝑗1,𝑗𝑗2) ) (Eq. 2). The term 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝑖𝑖(𝑗𝑗1,𝑗𝑗2)  represents the changes in meteorological 135 

conditions and can be calculated by the difference between the predicted values, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖(𝑗𝑗1)  and 136 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖(𝑗𝑗2), for the corresponding years (Eq. 3). The prediction result 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖(𝑗𝑗) obtained by applying the 137 

model trained with data from year i to the meteorological conditions of year j can be used to calculate 138 

the emission-driving variable 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖(𝑗𝑗)  corresponding to the model trained in year i and the 139 

meteorological conditions of year j using Eq. (4). Similarly, the value of 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝑖𝑖(𝑗𝑗1,𝑗𝑗2), representing the 140 

change in anthropogenic emissions between the two years j1 and j2, can be therefore calculated using Eq. 141 

(5). By performing these calculations, we can isolate and quantify the contributions of meteorological 142 

conditions and anthropogenic emission controls to the observed ozone trends. We used a cross-matrix 143 

research method to assess the uncertainty of FEA, with specific formulas available in Supporting Method 144 

S1. 145 
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𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 = 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖  ,                                  (1) 146 

𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥(𝑗𝑗1,𝑗𝑗2) = 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝑖𝑖(𝑗𝑗1,𝑗𝑗2) + 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝑖𝑖(𝑗𝑗1,𝑗𝑗2) ,                       (2) 147 

𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝑖𝑖(𝑗𝑗1,𝑗𝑗2) = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖(𝑗𝑗2) − 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖(𝑗𝑗1) ,                            (3) 148 

𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖(𝑗𝑗) = 𝑂𝑂𝑂𝑂𝑂𝑂𝑗𝑗 − 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖(𝑗𝑗) − 𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖  ,                          (4) 149 

𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝑖𝑖(𝑗𝑗1,𝑗𝑗2) = 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖(𝑗𝑗2) − 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖(𝑗𝑗1) = �𝑂𝑂𝑂𝑂𝑂𝑂𝑗𝑗2 − 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖(𝑗𝑗2) − 𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖� − �𝑂𝑂𝑂𝑂𝑂𝑂𝑗𝑗1 − 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖(𝑗𝑗1) − 𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖� 150 

= (𝑂𝑂𝑂𝑂𝑂𝑂𝑗𝑗2  − 𝑂𝑂𝑂𝑂𝑂𝑂𝑗𝑗1) − (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖(𝑗𝑗2) −  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖(𝑗𝑗1)) ,         (5) 151 

Model performance was first evaluated through ten-fold cross-validation for the Beijing–Tianjin–152 

Hebei (BTH) region, revealing high predictive skill between observed and predicted MDA8 ozone levels 153 

during 2015-2023 (Fig. S2). The index of agreement (IOA) ranged from 0.96 to 0.97, with correlation 154 

coefficients (R) between 0.93 and 0.95. Root mean square errors (RMSE) and normalized mean bias 155 

(NMB) varied from 16.9 to 21.9  μg m⁻3 and 8 to 25%, respectively, indicating high model accuracy. 156 

Nationally, the model yielded R values of 0.88–0.91 and IOA of 0.93–0.95, with errors remaining within 157 

acceptable ranges (Tables S3–S8). To assess uncertainty stemming from interannual model training 158 

variability, we applied a matrix-based resampling approach (Supporting Method S1). As shown in Fig. 159 

S3, the relative difference in residuals ranged from -9% to 3%, and remained within ±12% for all 160 

regions – supporting the robustness of the FEA method. 161 

2.3 Ozone formation regime detection with FNR 162 

Ozone concentrations show a significant nonlinear relationship with their precursors, which can be 163 

classified into three types: the VOC-controlled zone, the NOx-controlled zone, and the excessive/mixed 164 

zone. The ratio of HCHO to NO2 (FNR) serves as a reactive weighting of VOC/NOx and is one of the 165 

diagnostic indicators of ozone-sensitive intervals (Sillman, 1995)， this is particularly suited to the 166 

analysis of satellite data and has been widely used in related research (Jin et al., 2020; Jin and Holloway, 167 

2015; Wang et al., 2021).Based on the framework described by Ren et al. (2022) and Jin et al. (2015), 168 

we derived a diagnostic approach that is more applicable to our data, and the present study categorizes 169 

ozone sensitivity zones for the summer of 2018-2023 according to the following criteria: 170 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 <  4.0 𝑎𝑎𝑎𝑎𝑎𝑎 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 +  𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 <  6.0 ∶  VOC − controlled zone 171 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 >  4.0 𝑎𝑎𝑎𝑎𝑎𝑎 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 −  𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 >  2.0 ∶  NOₓ − controlled zone 172 

https://doi.org/10.5194/egusphere-2025-4014
Preprint. Discussion started: 11 September 2025
c© Author(s) 2025. CC BY 4.0 License.



8 
 

𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒: 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒/𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧  173 

where 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 and 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 denote the time-mean and standard deviation of the FNR for the target 174 

time period. 175 

2.4 FEA-based assessment of climate change impacts on ozone 176 

To further evaluate the long-term impact of climate change on ozone concentrations over China 177 

from 1970 to 2023, we extended the framework of our proposed FEA method. The core idea of this 178 

analysis is to isolate the influence of long-term meteorological variations on ozone, assuming fixed 179 

anthropogenic emissions. Given the availability of relatively complete and continuous hourly ozone 180 

observations and meteorological data across China from 2015 to 2023, we selected this period as the 181 

basis for constructing emission baselines.  182 

Following the modeling protocol described in the section Machine learning-based FEA, we trained 183 

nine separate random forest models – each using a different year from 2015 to 2023 as an emissions 184 

reference. Inputs included hourly ozone observations, key meteorological predictors, and time-related 185 

variables (hour of day and month of year). These trained models were then applied to historical reanalysis 186 

meteorology from 1970 to 2023 to simulate ozone trends under constant emissions. This yielded nine 187 

independent ozone trajectories, each reflecting the influence of long-term meteorological variability 188 

under a different fixed-emissions assumption. 189 

While the choice of emission baseline may affect the absolute magnitude of simulated ozone, it does 190 

not alter the primary objective: assessing the sensitivity of surface ozone to meteorological drivers over 191 

multidecadal timescales (Lecœur et al., 2014; Leung et al., 2018; Wang et al., 2022c). This approach 192 

captures the climate-induced ozone signal while adopting the commonly used assumption that emissions 193 

are not themselves influenced by climate change – a simplification consistent with prior attribution 194 

studies (Dang and Liao, 2019; Leung et al., 2018; Shen et al., 2017; Wang et al., 2022c). For comparison, 195 

we also estimated the impact of anthropogenic emission changes on ozone concentrations during the 196 

observational window of 2015–2023, using the same FEA methodology and the complete hourly dataset 197 

for model training. This dual-track analysis enables a clear distinction between the contributions of 198 

climate variability and emission mitigation to observed ozone trends. 199 
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3 Results and Discussion 200 

3.1 Spatiotemporal Evolution of Summertime Ozone (2013–2023) 201 

Figure 1 presents the interannual variations in maximum daily 8-hour average (MDA8) ozone 202 

concentrations during summertime (June–August) across China, with a focus on five key urban 203 

agglomerations: Beijing-Tianjin-Hebei (BTH), Yangtze River Delta (YRD), Fenwei Plain (FWP), 204 

Sichuan Basin (SCB), and Pearl River Delta (PRD). From 2013 to 2023, summertime ozone levels 205 

displayed distinct temporal patterns across regions, reflecting the impact of successive national emission 206 

control phases. During the first phase (2013–2017), nationwide MDA8 ozone increased significantly (p 207 

< 0.01), rising from 95.5 to 118.0  μg m⁻3. This growth was especially pronounced in the BTH and FWP 208 

regions, where concentrations increased by 38% and 41%, respectively. In contrast, ozone increases were 209 

more modest in the YRD (11%), SCB (15%), and PRD (16%) regions, respectively. These results were 210 

consistent with the previous studies (Li et al., 2021; Liu and Wang, 2020a, b; Wang et al., 2023a). 211 

In the second phase (2017–2020), corresponding to the implementation of more stringent emission 212 

controls on NOx and VOCs emissions (Geng et al., 2024; Liu et al., 2023), a moderate national decrease 213 

in MDA8 ozone was observed, with concentrations declining to 109.0 μg m⁻3. The regional declines 214 

during this period were most notable in FWP (−16%) and YRD (−15%), while BTH (−6%), SCB (−11%), 215 

and PRD (−4%) also showed reductions compared to their concentration peaks observed in 2017. 216 

However, this downward trend did not persist. In the third phase (2020–2023), the MDA8 ozone 217 

rebounded, reaching 118.4  μg m⁻3 in 2023 – comparable to its 2017 peak – with a particularly sharp 218 

increase during the summer of 2022. From 2021 to 2023, MDA8 ozone concentrations rose by 2.8 μg m⁻3 219 

in BTH, 3.1  μg m⁻3 in FWP, 16.1  μg m⁻3 in YRD, and 18.5  μg m⁻3 in SCB, respectively. 220 

Figure S1 further illustrates the spatiotemporal evolution of summertime MDA8 ozone across 354 221 

cities in China from 2013 to 2023. On average, 68% of cities exceeded the World Health Organization 222 

(WHO) air quality guideline of 100.0  μg m⁻3 for the MDA8 ozone. Elevated ozone levels were primarily 223 

observed in densely populated and economically developed eastern regions, such as North China Plain. 224 

Across the five major city clusters, the average ozone levels ranged from 89.4 to 152.8  μg m⁻3 – 225 

substantially exceeding the 43.0 μg m⁻3  threshold associated with ecosystem productivity loss (Gong et 226 

al., 2021), implying significant threats to both human and ecological health. Spatially, ozone hotspot 227 
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regions expanded between 2013 and 2017 (Fig. S1 a-e), followed by contraction during 2018-2020 (Fig. 228 

S1 f-i), reflecting initial policy effectiveness. However, this progress stalled from 2021. A sharp reversal 229 

was observed in 2022, with widespread increases in MDA8 ozone (Fig. S1 k), suggesting that the 230 

influence of emerging meteorological extremes or evolving ozone photochemical regimes may be 231 

counteracting the gains from emission reductions. 232 

 233 

Figure 1. Interannual trends of summertime MDA8 ozone across China (2013–2023). Panel (a) illustrate the 234 

seasonal variations of MDA8 ozone during the summer months (June, July, and August) across 354 cities nationwide. 235 

Panels (b-f) shows the average trend across five key regions in China: Beijing-Tianjin-Hebei (BTH), Fenwei Plain 236 

(FWP), Yangtze River Delta (YRD), Sichuan Basin (SCB), and Pearl River Delta (PRD). The summer months are 237 

defined according to meteorological seasonality, encompassing June, July, and August. In the violin plots, hollow 238 

diamond markers denote the mean, while solid diamond markers represent the median. The Mann-Kendall test and 239 

Sen's slope estimator were employed to assess the statistical significance and rate of change in the monthly average 240 

MDA8 ozone concentrations. 241 

 242 

3.2 Anthropogenic drivers of ozone trends 243 

To isolate the influence of anthropogenic emissions on summertime ozone variability, we 244 

implemented a machine learning-based FEA framework (Sect. 2.2). This framework employs random 245 

forest (RF) models to disentangle the respective contributions of emission changes and meteorological 246 
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variability to observed ozone trends. As illustrated in Fig. 2, anthropogenic emissions were the dominant 247 

driver of ozone increases during 2013–2017, contributing an average rise of 23.2 ± 1.1  μg m⁻3 across 248 

354 cities over China. The strongest regional increases occurred in the FWP and BTH, with contributions 249 

of 45.0 ± 2.0  μg m⁻3 and 42.1 ± 2.0  μg m⁻3, respectively. In contrast, the PRD exhibited a smaller 250 

increase (13.4 ± 1.6  μg m⁻3). These findings indicate that the emission control strategies during China’s 251 

first phase of air quality control efforts, which primarily focused on reducing PM2.5 and haze, 252 

inadvertently contributed to worsening ozone pollution by altering the atmospheric chemistry and 253 

precursor balance (Zhang et al., 2019; Zheng et al., 2018). This finding is consistent with previous model-254 

based assessments using chemical transport models (Li et al., 2021; Wu et al., 2022), and supports the 255 

reliability of the FEA framework in attributing observed ozone changes to underlying drivers. 256 

In 2018, China launched its second-phase Clean Air Action Plan, which aimed to the coordinated 257 

control of both PM2.5 and ozone by reducing NOx and VOCs emissions (Zhang et al., 2019; Zheng et al., 258 

2018). During this period (2017-2020), summertime ozone concentrations decreased substantially in 259 

northern China. As shown in Fig. 2, the MDA8 ozone declined by 10.5 ± 2.0  μg m⁻3 in BTH and 260 

10.4 ± 3.0  μg m⁻3 in FWP, with smaller but consistent declines in YRD (–4.8 ± 3.8 μg m⁻3), SCB (–261 

2.8 ± 2.4 μg m⁻3), and PRD (–6.6 ± 1.4 μg m⁻3) during 2017 – 2020. These changes underscore the 262 

effectiveness of targeted precursor controls and align well with prior studies (Liu et al., 2023; Wang et 263 

al., 2023a).  264 

This period also overlapped with the COVID-19 pandemic, which occurred from January to April 265 

2020, introduced an unprecedented, large-scale perturbation to human activity. The nationwide lockdown 266 

led to dramatic declines in industrial production, energy consumption, and transportation (Shi and 267 

Brasseur, 2020; Zheng et al., 2021). This provided a natural experiment to evaluate the short-term ozone 268 

response to abrupt anthropogenic emission reductions. As shown in Fig. S4, from 2017 to 2020, the 269 

MDA8 ozone annual mean levels showed a slight national decline, but the pandemic led to an increase 270 

in BTH, FWP, YRD, and SCB by +1.7 to +2.3 μg m⁻³, while PRD experienced a decline. Further analysis 271 

(Fig. S5) indicates that ~79% of cities saw increases in ozone during this period, with a national average 272 

rise of 2.1 ± 1.3  μg m⁻3. These increases are consistent with suppressed NO titration and enhanced 273 

photochemical ozone production under cleaner atmospheric conditions (Shi et al., 2021; Wang et al., 274 

2022a). In the post-pandemic period (2020–2023), the influence of anthropogenic emissions on 275 
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summertime ozone trends became more subdued Emission-driven changes showed relatively small and 276 

mixed contributions across all regions, ranging from –1.2 to +2.6 μg m⁻³ in BTH, –1.6 to +4.0 μg m⁻³ in 277 

FWP, –4.7 to +7.4 μg m⁻³ in YRD, –3.6 to +3.0 μg m⁻³ in SCB, and –3.8 to +7.7 μg m⁻³ in PRD (Fig. 278 

S6). These limited impacts suggest that the benefits of prior emission reduction efforts may have 279 

plateaued, and that other drivers – particularly meteorological extremes – are becoming increasingly 280 

prominent in shaping ozone variability. 281 

 282 

Figure 2. Anthropogenic and meteorological drivers of ozone trends from 2013 to 2023. Changes in summerime 283 

MDA8 ozone concentrations were decomposed into contributions from anthropogenic emissions and meteorological 284 

variability using the FEA framework. Results reflect ensemble estimates based on multiple baseline years (2015–285 

2023) for emissions. Boxplots indicate the interquartile range, with values in parentheses denoting the 25th and 75th 286 

percentiles across all baseline scenarios. 287 

 288 

3.3 Ozone formation sensitivity and regime shifts 289 

To diagnose the chemical sensitivity of ozone formation, we analyzed the spatial distributions of 290 

tropospheric NO2 and HCHO columns retrieved by TROPOMI during summer months from 2018 to 291 

2023 (Fig. S7–S8). NO2 concentrations displayed strong spatial gradients, with eastern China exhibiting 292 

levels five times higher than the west – reflecting dense population centers and elevated anthropogenic 293 
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NOx emissions. While NO2 levels steadily declined over time, the summertime average NO2 column 294 

concentration in the North China Plain decreased from 4.13 × 1015molecules cm⁻2 in 2018 to 3.85 × 1015 295 

molecules cm⁻2 in 2023, HCHO concentrations remained relatively stable during 2018–2021. However, 296 

a sharp increase in HCHO was observed in the Yangtze River Delta during the record-breaking heatwave 297 

of 2022, likely due to elevated biogenic and anthropogenic VOC emissions under extreme temperatures 298 

(Qin et al., 2025; Tao et al., 2024). By 2023, HCHO levels returned to near-baseline, consistent with 299 

cooler summer conditions. 300 

To further characterize the photochemical regimes, we derived the threshold of the HCHO/NO2 ratio 301 

(FNR), a widely used proxy for ozone formation sensitivity (Jin and Holloway, 2015; Li et al., 2024; Ren 302 

et al., 2022; Wang et al., 2021). As shown in Fig. 3, extensive VOC-limited and transition zones were 303 

observed in major megacity clusters. most urbanized regions of China remained within the VOC-limited 304 

throughout the study period, with the notable exception of the PRD, which was predominantly NOx-305 

limited or transitional regimes. This is consistent with previous studies, where VOC-limited regimes 306 

primarily appeared in economically developed and densely populated urban areas, with transition zones 307 

surrounding VOC-limited areas in large cities and suburbs (Li et al., 2024; Shen et al., 2021). 308 

From 2018 to 2020, regime boundaries exhibited only modest changes. During this period, the 309 

VOC-limited areas in the study region gradually decreased, while transition zones correspondingly 310 

increased. Additionally, some areas initially classified as transitional regimes shifted to NOx-limited 311 

regimes. The expansion of mixed and NOx-limited regimes was closely associated with significant NOx 312 

emission reductions (Wang et al., 2023a). In 2021, the VOC-limited area expanded slightly across eastern 313 

China. A more dramatic shift occurred in 2022, as extreme heat and elevated VOC levels drove 314 

widespread transitions from VOC-limited to transitional or NOx-limited regimes, especially across the 315 

YRD and surrounding regions.  316 

Monthly regime evolution from 2020 to 2023 (Fig. S9) confirms that the most extensive regime 317 

shifts occurred in August 2022 (Fig. S9i), coinciding with peak temperatures and FNR anomalies. 318 

Notably, VOC-limited areas tended to be smaller in July and August compared to June, likely due to 319 

increased VOC reactivity under higher temperatures (Fig. S9). However, major cities generally remained 320 

VOC-limited, while adjacent suburban areas shifted dynamically between transitional and VOC-limited 321 

regimes. In contrast, outer suburbs and rural regions were more frequently controlled by NOx (Shen et 322 
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al., 2021; Wang et al., 2021). Although VOC-limited regimes partially recovered in 2023, their spatial 323 

extent remained smaller than in 2021, likely due to ongoing NOx emission reductions outpacing changes 324 

in VOCs emissions, contributing to a structural shift in ozone formation chemistry. These findings 325 

highlight the influence of climate-induced VOCs responses and precursor imbalance in driving ozone 326 

formation regime shifts and complicating ozone mitigation efforts. While this influence has already 327 

become prominent in the current phase, it is expected to intensify with the increasing frequency of 328 

extreme weather events in the future. 329 

 330 

Figure 3. Ozone formation sensitivity regimes. The results of FNR analysis from June to August (2018-2023) are 331 

presented, showing the spatiotemporal variation of ozone sensitivity in different regions. The colors in the map 332 

represent the geographical distribution of VOC-limited, NOx-limited, and transitional ozone sensitivity zones. The 333 

city locations within the five key regions of China are shown in Fig. S10. 334 

 335 

3.4 Impact of meteorological variations on ozone 336 
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Meteorological conditions directly and indirectly modulate surface ozone concentrations by 337 

influencing photochemical reactions, vertical mixing, and dispersion processes (Li et al., 2019b; Li et al., 338 

2020). These effects exhibit strong regional and temporal heterogeneity across China. As shown in Fig. 339 

2, during Phase I (2013–2017), meteorological contributions to summertime MDA8 ozone remained 340 

modest, ranging from -4.8 to +3.9  μg m⁻3. In Phase II (2017–2020), notable ozone reductions attributable 341 

to meteorology were observed– -14.4 ± 3 μg m⁻3, -15.9 ± 3.8 μg m⁻3, and -11.1 ± 2.4 μg m⁻3 in FWP, 342 

YRD, and SCB, respectively. These reductions accounted for 58 ± 12%, 77 ± 18%, and 80 ± 17% of the 343 

total summertime MDA8 ozone reduction during this phase. however, these impacts remained smaller 344 

than those from emission controls in BTH and PRD. In contrast, during 2020–2023, ozone trends became 345 

increasingly influenced by meteorological anomalies, particularly in 2022. That summer, extreme 346 

heatwaves (Mallapaty, 2022; Wang et al., 2023b) led to sharp increases in MDA8 ozone, contributing 347 

20.8 ± 3.6  μg m⁻3 in YRD and 22.1 ± 3.2  μg m⁻3 in SCB. In 2023, however, abundant summer rainfall 348 

suppressed ozone formation, with MDA8 ozone decreasing by –17.8 ± 2.3  μg m⁻3 in YRD and –9.7 ± 3.3  349 

μg m⁻3 in SCB. These declines correspond to year-on-year increases in rainfall of 102% and 35% in the 350 

two regions, respectively (Fig. S11).  351 

To further elucidate the dominant meteorological drivers of ozone variability, we examined Gini 352 

importance (Nembrini et al., 2018; Wright and Ziegler, 2017) scores derived from the RF model across 353 

18 predictor variables (Fig. S12). Temperature (T) and relative humidity (RH) emerged as the most 354 

influential variables in the BTH, FWP, and SCB regions, while in the YRD, shortwave solar radiation 355 

(SR), RH, and rainfall were dominant. These results suggest that ozone variability is governed by 356 

complex meteorological interactions that vary regionally. For instance, rainfall is typically associated 357 

with lower solar irradiance and increased cloud cover, both of which are unfavorable for photochemical 358 

ozone production (Jacob and Winner, 2009; Shan et al., 2008). Moreover, the high importance of T and 359 

SR in these regions indicates that surface ozone is highly sensitive to thermal conditions and 360 

photochemical intensity (Yang et al., 2025). Elevated temperatures accelerate ozone precursor emissions 361 

and reaction rates, while stronger solar radiation enhances photolysis and ozone formation potential (Qin 362 

et al., 2025; Tao et al., 2024). In the PRD, ozone variability was more strongly influenced by temperature 363 

and transport-related indices (such as meridional winds at different layers, etc.). This likely reflects the 364 

region’s subtropical coastal climate, where frequent summer typhoon incursions from the Northwest 365 
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Pacific modulate large-scale atmospheric transport (Chen et al., 2024; Wang et al., 2024a; Wang et al., 366 

2022b). These events may introduce strong horizontal advection and vertical mixing, thereby altering the 367 

distribution and buildup of ozone precursors, and contributing significantly to the observed ozone 368 

variability. As shown in Fig. S13, the correlations between ozone and key meteorological variables were 369 

notably enhanced during heatwave (HW) periods. Specifically, ozone positively correlated with both T 370 

and SR, and negatively (or weakly) correlated with RH. During prolonged rainfall (PR) events, cities in 371 

the Yangtze-Huaihe region showed the strongest RH–ozone anti-correlation (R < –0.7), likely driven by 372 

the enhanced wet scavenging and reduced photochemistry (Fig. S14 a – c). 373 

To quantify the individual contributions of meteorological variables, we applied SHAP (SHapley 374 

Additive exPlanations) analysis to HW and PR events in the Yangtze-Huaihe region from 2015 to 2023 375 

(Supporting Methods S3). As shown in Fig. S15 and Fig. S14 d, HW events were associated with strong 376 

positive SHAP values in southeastern coastal cities, the YRD, and SCB – primarily driven by elevated 377 

SR and T. Indeed, mean SR during HW periods was significantly higher than during non-HW periods 378 

(Fig. S16), amplifying photochemical ozone production potential. In contrast, PR events consistently 379 

yielded negative SHAP contributions across all cities, mainly due to reduced sunlight and suppressed 380 

precursor buildup. A multi-year comparison (Fig. 4) highlights the opposing effects of key meteorological 381 

variables – including RH, T, boundary layer height, total precipitation, and surface pressure – on MDA8 382 

ozone. SR, RH, and T emerged as the most influential parameters, while total cloud cover and 383 

meteorological transport playing secondary roles during HW episodes. The intensity of HW and PR 384 

events modulated the magnitude of these effects. For instance, high-rainfall PR events in 2016 and 2020 385 

yielded large negative SHAP contributions (–29.7 and –16.9  μg m⁻3), mainly via RH-driven suppression. 386 

Conversely, reduced rainfall in 2023 weakened the RH effect, though advection and vertical mixing still 387 

contributed to ozone suppression (Fig. S17). 388 

 389 
Figure 4. Meteorological influences on predicted ozone concentrations under heatwave and rainy weather 390 

conditions. (a) Differences in SHAP values (ΔSHAP) between heatwave and non-heatwave periods in the Yangtze-391 
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Huaihe region during summer 2022. (b) Differences in SHAP values (ΔSHAP) between prolonged rainfall periods 392 

and non-prolonged rainfall periods in the same region from 2015 to 2023. Box plots show the distribution of ΔSHAP 393 

across cities; the center line indicates the median, boxes denote the interquartile range (25th-75th percentiles), and 394 

whisker line extends to one standard deviation. 395 

 396 

3.5 Reshaping ozone trends in a warming climate 397 

To assess the long-term influence of climate change on surface ozone concentrations, we applied 398 

the FEA framework to simulate summertime ozone trends over the period 1970 – 2023. In this analysis, 399 

anthropogenic emissions were held constant at their 2015 – 2023 summertime levels, while interannual 400 

variations in meteorological variables were introduced using historical reanalysis data. This design 401 

isolates the climate-driven component of ozone trends while assuming that emission trajectories are 402 

independent of climate change – a simplification aligned with prior attribution frameworks (Wang et al., 403 

2022c). The impact of anthropogenic emission controls was estimated by comparing observed ozone 404 

concentrations with FEA-predicted values during 2015 – 2023, thereby quantifying the residual effect of 405 

emissions under fixed meteorology. 406 

As shown in Fig. 5, under the 2015-2023 emission levels, climate change has exerted a statistically 407 

significant (p < 0.05) positive influence on urban summertime ozone concentrations across China, 408 

resulting in a nationwide increase of approximately 0.06  μg m⁻3 a⁻1 since 1970. All five major urban 409 

regions displayed upward trends, with the most pronounced increase observed in the BTH and SCB at 410 

0.12 μg m⁻3 a⁻1. Spatial correlations between climate-driven ozone increases and temperature changes 411 

(Fig. S18) further confirm that warming is the dominant contributor to long-term ozone enhancement. In 412 

particular, the correlation coefficients between ozone trends and temperature anomalies reached 0.90 413 

(BTH), 0.89 (FWP), 0.72 (YRD), and 0.93 (SCB), indicating a strong temperature dependence of 414 

climate-induced ozone formation in these regions. The PRD showed a weaker correlation, likely due to 415 

its unique subtropical maritime climate and higher humidity and cloud cover, which tend to suppress 416 

photochemical ozone production(Yang et al., 2019). 417 

These findings are consistent with previous projections that forecast an increase in high-ozone 418 

events under future climate scenarios spanning 2020–2100 (Li et al., 2023). The historical record already 419 

reflects this risk: despite significant increases in anthropogenic emissions driving ozone growth prior to 420 

2018, national air quality improvement measures began to yield reductions thereafter. However, since 421 
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2020, a rebound in ozone concentrations has emerged in several regions, suggesting that the climatic 422 

penalty for ozone is beginning to offset the benefits of emission control. The intense heatwave of the 423 

2022 summer significantly enhanced ozone formation and altered ozone sensitivity – shifting from a 424 

VOC-limited region to a transition zone or NOx-limited region. Meanwhile, the reduction in 425 

anthropogenic emissions of ozone precursor substances indirectly led to changes in ozone sensitivity, 426 

thereby making anthropogenic emission reductions more effective in ozone control. However, overall, 427 

the direct effects of climate change (i.e., increased ozone formation) far outweigh the indirect effects of 428 

anthropogenic emission controls, indicating that the punitive effects of climate change on ozone will 429 

become increasingly significant in the future. Taken together, these results underscore the dual challenges 430 

of air quality management in a warming climate. Anthropogenic emission reductions remain critical, but 431 

they may no longer suffice in isolation. As the warming-driven enhancement of ozone formation becomes 432 

more prominent, China and other rapidly urbanizing regions will require adaptive and climate-resilient 433 

air quality strategies – including dynamic precursor control, land-use planning, and extreme weather 434 

early warning systems –to sustainably mitigate ozone pollution in the decades to come. 435 

 436 

Figure 5. Impact of climate change and emission controls on ozone trends. Left panels show ozone trends 437 

attributable to long-term climate change from 1970 to 2023, simulated under fixed emission scenarios using the FEA 438 

framework. Right panels depict ozone trends from 2015 to 2023, reflecting the impact of anthropogenic emission 439 

controls. Each trajectory represents results based on a distinct emissions baseline year. Shaded grey areas indicate 440 

the interquartile range (25th-75th percentiles), solid red lines denote trend estimates, and light red shading marks the 441 
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5th-95th percentile confidence intervals. Statistical significance and trend slopes were assessed using the Mann-442 

Kendall test. 443 

 444 

4 Conclusions and implications 445 

China is confronted with the dual challenges of climate change and ozone pollution. Over the 446 

past decade, summertime ozone concentrations across the country have exhibited complex 447 

spatiotemporal patterns, reflecting the evolving interplay between anthropogenic emissions, 448 

meteorological variability, and large-scale climate dynamics. In this study, we developed and 449 

applied a machine learning-based FEA framework to disentangle and quantify the respective roles 450 

of anthropogenic emissions and meteorological drivers in shaping ozone trends during 2013-2023. 451 

With a national-level prediction uncertainty of approximately 6%, the FEA method provides a 452 

computationally efficient and scalable tool for diagnosing atmospheric variability across large 453 

spatial and temporal domains. 454 

Our analysis revealed that increased anthropogenic precursor emissions were the dominant 455 

driver of the sharp rise in summertime MDA8 ozone concentrations during the first phase (2013–456 

2017), contributing an average increase of 23.2 ± 1.1  μg m⁻3. In contrast, during the second phase 457 

(2018–2020), enhanced air quality regulations – particularly the synergistic control of NOx and 458 

VOCs – led to measurable reductions in MDA8 ozone, with national-average declines of 4.6 ± 1.5  459 

μg m⁻3. These improvements were especially evident in regions such as BTH and FWP, where ozone 460 

formation is highly sensitive to VOC levels. However, during the most recent period (2021–2023), 461 

the impact of emission reductions diminished considerably, with regional ozone levels either 462 

plateauing or rebounding. This stagnation underscores the urgent need for more targeted, region-463 

specific emission control strategies that address the shifting photochemical sensitivity of ozone 464 

formation regimes. 465 

Applying the SHAP method, we further quantified the impacts of extreme meteorological 466 

events on ozone levels. Our results show that record-breaking heatwaves in 2022 contributed to 467 

widespread ozone enhancements of up to 5.8  μg m⁻3, while prolonged rainfall events – particularly 468 

during the East Asian plum rain seasons – suppressed ozone production by as much as –15.2  μg m⁻3. 469 
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These findings highlight the increasingly dominant role of short-term meteorological extremes in 470 

modulating ozone air quality under a warming climate. In parallel, satellite-based FNR analysis 471 

diagnostics revealed that most urban clusters in China remained in VOC-limited or transitional 472 

regimes, except the PRD, which was largely NOx-limited. The 2022 heatwave triggered regime 473 

shifts in regions such as the YRD, where rising VOCs emissions and elevated temperatures shifted 474 

the photochemical regime toward NOx-limited. These results emphasize the importance of dynamic, 475 

region-specific assessments of ozone formation sensitivity in the formulation of effective mitigation 476 

strategies. 477 

To assess the climate penalty on ozone, we extended the FEA framework to simulate long-term 478 

trends from 1970 to 2023, by fixing emissions and allowing meteorological variables to evolve with 479 

observed climate trends. Our findings show that climate change has contributed a significant upward 480 

trend in urban summertime ozone, averaging 0.06  μg m⁻3 a⁻1, with particularly strong increases in 481 

the BTH and SCB. Correlations between ozone and surface temperature were consistently high 482 

(r = 0.72–0.93) in BTH, FWP, YRD, and SCB, suggesting that warming has increasingly offset gains 483 

from emission controls in recent years.  484 

While the FEA framework provides a powerful diagnostic tool, some limitations remain. For 485 

example, the historical simulations did not account for climate-driven changes in land use, 486 

topography, or population density, which may introduce biases in long-term attribution (Zhu et al., 487 

2025). Future work could incorporate dynamic ancillary datasets and emissions scenarios to further 488 

improve model performance. Overall, this study underscores the escalating influence of climate 489 

extremes on ozone variability and the emerging limits of conventional emission control approaches. 490 

In the face of continued warming, machine learning-based attribution frameworks such as FEA offer 491 

a promising pathway for integrating meteorology, chemistry, and policy analysis. To achieve 492 

sustained improvements in ozone air quality, future strategies must consider the compound effects 493 

of anthropogenic emissions, short-term weather events, and long-term climate change, and adopt 494 

adaptive, region-specific, and climate-resilient air quality management frameworks. 495 

  496 
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