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16 Abstract. Surface ozone, a major air pollutant with profound implications for human health, ecosystems,
17 and climate, shows long-term trends shaped by both anthropogenic and climatic drivers. Here, we
18 develop a machine learning-based approach — the Fixed Emission Approximation (FEA) — to disentangle
19 the effects of meteorological variability and anthropogenic emissions on summertime ozone trends in
20 China. We identify three distinct phases of ozone trends corresponding to clean air actions.
21 Anthropogenic emissions drove a +23.2 + 1.1 pg m= increase in summer maximum daily 8-hour average
22 ozone during 2013-2017, followed by a —4.6 + 1.5 pg m™ decrease during 2018-2020. However, during
23 2021-2023, extreme meteorological anomalies — including heatwaves and extended monsoon
24 rainfall — emerged as key drivers of ozone variability. Satellite-derived formaldehyde-to-nitrogen
25 dioxide ratios reveal widespread urban volatile organic compounds-limited regimes, with a shift toward
26 nitrogen oxides-limited sensitivity under influence of heatwaves. Finally, we assess ozone trends under
27 sustained climate warming from 1970 to 2023 based on the FEA framework. The results indicate a
28 significant climate-driven increase in ozone levels across China's urban agglomerations,
29 underscoring the amplifying role of climate change in ozone pollution. Together, these findings
30 highlight the dual influence of anthropogenic and climatic factors on ozone pollution and emphasize
31 the need for integrated strategies that couple emission mitigation with climate adaptation to
32 effectively manage ozone risks in a warming world.

33
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34 1 Introduction

35 Surface ozone (O3) is a critical air pollutant that poses significant threats to human health (Knowlton
36 et al., 2004), ecosystems (Agathokleous et al., 2020), and climate (Fishman et al., 1979; Hauglustaine et
37 al., 1994). It forms through complex photochemical reactions involving nitrogen oxides (NOy) and
38 volatile organic compounds (VOCs) in the presence of sunlight (Jacob, 2000; Wang et al., 2017)
39 exhibiting a nonlinear response to its precursors (Guo et al., 2023; Liu and Shi, 2021; Wang et al., 2023a).
40 Controlling ozone pollution remains a global environmental challenge. In recent years, China has
41 implemented a series of national clean air actions, most notably the Air Pollution Prevention and Control
42 Action Plan (2013-2017) and the Three-Year Action Plan for Winning the Blue-Sky War (2018-2020)
43 (Geng et al., 2024; Zhang et al., 2019; Zheng et al., 2018), that have markedly improved air quality,
44 particularly by reducing fine particulate matter (PM.5) (Geng et al., 2024; Zhang et al., 2019). However,
45 surface ozone levels have continued to rise in many regions, raising concerns over the complex drivers
46 of ozone trends and highlighting the need for scientific attribution to guide effective mitigation strategies
47 (Lietal, 2019a; Liu et al., 2023; Wang et al., 2023a; Weng et al., 2022).

48 Long-term ozone variability is jointly influenced by anthropogenic emissions and weather
49 conditions as well as regional climate (Hallquist et al., 2016; Li et al., 2019b; Wang et al., 2022b). While
50 emission controls directly regulate precursor abundance, climate change modulates ozone through
51 chemical feedbacks, meteorological dynamics, and biosphere - atmosphere interactions (Ma and Yin,
52 2021; Xue et al., 2020). Over the past century, global surface temperatures have increased by
53 approximately 1.2 °C relative to the pre-industrial baseline (1850-1900), driven largely by human
54 activity (Legg, 2021). In a warming world, extreme climate anomalies — such as heatwaves and persistent
55 rainfall shifts — are expected to intensify (Diffenbaugh et al., 2017). These events are increasingly
56  recognized as critical modulators of ozone variability through their impacts on photochemistry, vertical
57 mixing, and precursor transport (Gao et al., 2023; Pu et al., 2017; Wang et al., 2022b).

58 Quantifying the respective roles of anthropogenic emissions and meteorological variability in
59 driving ozone trends is therefore essential for evaluating the effectiveness of clean air policies (Li et al.,
60  2019a; Liu et al., 2023). Previous studies have reported rapid increases in surface ozone concentrations

61 in key Chinese regions — such as the Beijing—Tianjin—Hebei (BTH) and Yangtze River Delta (YRD) —
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62 during the initial policy phase (2013 —2017), with increases of approximately 28% and 18%, respectively
63 (Chen et al., 2020; Li et al., 2019a; Liu et al., 2023). In contrast, a modest decline in ozone levels was
64 observed during 2018 — 2020, largely attributed to emission reductions (Li et al., 2021; Liu and Wang,
65 2020b; Wang et al., 2024b; Wang et al., 2023a). However, since 2021, observations indicate a renewed
66 increase in ozone concentrations (Fig. S1). These fluctuations suggest oscillating trends over the past
67 decade, the drivers of which remain poorly constrained.

68 Two main approaches have been applied to attribute air pollution trends: chemical transport models
69 (CTMs) (Li et al., 2021; Liu et al., 2023; Liu and Wang, 2020a) and data-driven statistical frameworks
70 (Li et al., 2019a; Li et al., 2019b; Li et al., 2020). CTMs simulate atmospheric composition based on
71 emission inventories, meteorological fields, and chemical mechanisms (Ivatt et al., 2022; Liu and Shi,
72 2021; Liu et al., 2023; Ye et al., 2024). They allow attribution of trend components to emissions or
73 meteorology, and can resolve sector-specific impacts. However, these models face challenges, including
74 uncertainties and temporal lags in emission inventories. Statistical models, on the other hand, rely on
75 observational datasets and predictor-response relationships without requiring explicit emissions or
76 chemical schemes (Li et al., 2019a; Li et al., 2019b; Li et al., 2020; Zhai et al., 2019). With the growing
77 availability of atmospheric big data, statistical and machine learning models have emerged as powerful
78 tools for trend attribution (Dai et al., 2023; Grange et al., 2018; Vu et al., 2019; Zhang et al., 2025; Zheng
79 et al., 2023). For instance, Grange et al. (2018) developed a random forest-based framework to isolate
80  meteorological influences on particulate matter. Similarly, Wang et al. (2023a) used an enhanced
81 XGBoost model to analyze spatial and temporal ozone patterns in China from 2010 to 2021, confirming
82 that emission reductions played a key role in recent declines. Other recent efforts have extended such
83 models to long-term assessments of air pollution drivers under climate change (Wang et al., 2022c¢).

84 Here, we develop a novel machine learning-based framework — Fixed Emission Approximation
85 (FEA) — to quantify the respective roles of anthropogenic emissions and meteorological conditions in
86 shaping summertime surface ozone trends in China. Applying FEA to nationwide observational data from
87 2013 to 2023, we identify three distinct phases of ozone evolution corresponding to major clean air
88 actions and policy transitions. We further analyze short-term ozone anomalies associated with extreme
89  weather events, such as the 2022 heatwave and seasonal monsoon rainfall. To characterize photochemical

90 regimes, we integrate satellite-derived formaldehyde-to-nitrogen dioxide (HCHO/NO,, FNR) ratios from
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91 Tropospheric Monitoring Instrument (TROPOMI), revealing spatiotemporal shifts in ozone formation
92 sensitivity across China. Finally, we extend our FEA analysis to evaluate climate-driven ozone trends
93 from 1970 to 2023, using historical meteorological reanalysis data. Together, these results provide a
94 comprehensive picture of the anthropogenic and climatic forces shaping surface ozone dynamics in a

95  rapidly warming and urbanizing China.

96 2 Data and Methods

97 2.1 Sampling site and instruments

98 Hourly surface ozone concentration data were obtained from the National Environmental

99 Monitoring Center of China and can be accessed through the open website https://air.cnemc.cn: 18007/

100 (last accessed: May 20, 2024). Hourly meteorological data with a spatial resolution of 0.25° x 0.25° were

101 sourced from the ERAS reanalysis dataset provided by the European Centre for Medium-Range Weather

102 Forecasts (ECMWEF) and are available for download at https://cds.climate.copernicus.cu (last accessed:
103 March 20, 2025). For detailed variables, refer to Table S1. The MDAS ozone TAP dataset (Geng et al.,
104 2021) for 2013 and 2014 can be downloaded from http://tapdata.org (last accessed: May 20, 2024). The
105 Tropospheric Monitoring Instrument (TROPOMI) on the Sentinel-5P satellite provides global continuous
106 observation data for two indicators of O3 precursor substances: nitrogen dioxide (NO7) and formaldehyde
107 (HCHO) concentrations (Lamsal et al., 2014; Shen et al., 2019). The spatial resolution of TROPOMI

108 data is 1113.2 meters (approximately 0.009° in China) (Ren et al., 2022).

109 2.2 Machine learning-based FEA approach

110 In this study, we propose a machine learning-based FEA approach to assess the impacts of
111 meteorological factors and anthropogenic emissions on the year-round variations in 0zone concentrations.
112 First, we construct a regression model using the random forest (RF) algorithm to relate ozone
113 concentrations to meteorological parameters at various atmospheric heights and to regular emission
114 surrogate parameters (i.e., time variables). The meteorological parameters include 18 distinct variables
115 at different altitudes, while the emission surrogate parameters include the month and the hour of the day,

116  these temporal predictors capture the effects of day-night cycles and workday patterns on air pollutant
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117 concentrations, reflecting the long-term trends in pollutant behavior. The aforementioned variables have
118 been used as typical emission surrogate input features in previous studies (Grange et al., 2018; Meng et
119 al., 2025; Shi etal., 2021; Vu et al., 2019). Our modeling strategy involves building and predicting models
120 for individual cities and for each year from 2015 to 2023. Due to the lack of available observational data
121 for many cities in 2013 and 2014, we did not develop models for these two years. In our approach, 80%
122 of the dataset is used for model training, while the remaining 20% is reserved for testing. We perform
123 ten-fold cross-validation and assess model performance using seven statistical metrics, as listed in Table
124 S2.

125 Following the construction of the machine learning models for individual cities and years, we
126 introduce the FEA approach. The key principle of FEA is the assumption that the total emissions of ozone
127 precursors remain unchanged from the baseline year. Specifically, using the model trained on data from
128 the baseline year (i) as a reference for anthropogenic emissions, we establish hourly-resolution models
129 for the summer months (June to August) of the baseline year. These models are then applied to predict
130 ozone concentrations under the meteorological conditions of the prediction year (j), while holding the
131 emission levels constant at those of the baseline year (7). The difference between the predicted values and
132 the observed values for the baseline year (i) represents the model residuals (RES;), as shown in Eq. (1).
133 The difference in observed MDAS ozone concentrations between two different prediction years (j;, j») is
134 driven by the differences in meteorological conditions (AMET;;, j;)) and anthropogenic emission
135 controls (4ANTyjy,j2y) (Eq. 2). The term AMETjy j,) represents the changes in meteorological
136 conditions and can be calculated by the difference between the predicted values, Pred;(;y and
137 Pred;(j,), for the corresponding years (Eq. 3). The prediction result Pred;(;, obtained by applying the
138 model trained with data from year i to the meteorological conditions of year j can be used to calculate
139 the emission-driving variable ANT;;) corresponding to the model trained in year i and the
140 meteorological conditions of year j using Eq. (4). Similarly, the value of AANT;;, ;»), representing the
141 change in anthropogenic emissions between the two years j; and j,, can be therefore calculated using Eq.
142 (5). By performing these calculations, we can isolate and quantify the contributions of meteorological
143 conditions and anthropogenic emission controls to the observed ozone trends. We used a cross-matrix
144 research method to assess the uncertainty of FEA, with specific formulas available in Supporting Method

145 S1.
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146 OBS; = Pred; + RES; , (1)
147 AOBS(j1, j2y = AMET;(j1,j2y + AANT(j1,j2) » )
148 AMET(jy, j2) = Pred;(jz) — Pred;(yy » 3)
149 ANT;(jy = OBS; — Pred;(;y — RES; , 4)
150 AANTy 15y = ANTy(jz) — ANTy(;1y = (OBS;j; — Pred,(j» — RES;) — (OBSj; — Pred;(jy — RES;)
151 = (0BSj, — 0BSj;) — (Predyj;y — Pred;;y)), )
152 Model performance was first evaluated through ten-fold cross-validation for the Beijing - Tianjin -

153 Hebei (BTH) region, revealing high predictive skill between observed and predicted MDAS ozone levels
154 during 2015-2023 (Fig. S2). The index of agreement (IOA) ranged from 0.96 to 0.97, with correlation
155 coefficients (R) between 0.93 and 0.95. Root mean square errors (RMSE) and normalized mean bias
156 (NMB) varied from 16.9 to 21.9 pgm™ and 8 to 25%, respectively, indicating high model accuracy.
157 Nationally, the model yielded R values of 0.88—0.91 and IOA of 0.93-0.95, with errors remaining within
158 acceptable ranges (Tables S3—-S8). To assess uncertainty stemming from interannual model training
159 variability, we applied a matrix-based resampling approach (Supporting Method S1). As shown in Fig.
160 S3, the relative difference in residuals ranged from -9% to 3%, and remained within +12% for all

161 regions — supporting the robustness of the FEA method.

162 2.3 Ozone formation regime detection with FNR

163 Ozone concentrations show a significant nonlinear relationship with their precursors, which can be
164 classified into three types: the VOC-controlled zone, the NOx-controlled zone, and the excessive/mixed
165 zone. The ratio of HCHO to NO (FNR) serves as a reactive weighting of VOC/NOy and is one of the
166 diagnostic indicators of ozone-sensitive intervals (Sillman, 1995), this is particularly suited to the
167 analysis of satellite data and has been widely used in related research (Jin et al., 2020; Jin and Holloway,
168 2015; Wang et al., 2021).Based on the framework described by Ren et al. (2022) and Jin et al. (2015),
169 we derived a diagnostic approach that is more applicable to our data, and the present study categorizes
170 ozone sensitivity zones for the summer of 2018-2023 according to the following criteria:

171 FNRavg < 4.0 and FNRavg + FNRsd < 6.0 : VOC — controlled zone

172 FNRavg > 4.0 and FNRavg — FNRsd > 2.0 : NOx — controlled zone

7
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173 Otherwise: excessive /mixed zones
174 where FNRavg and FNRsd denote the time-mean and standard deviation of the FNR for the target

175 time period.
176 2.4 FEA-based assessment of climate change impacts on ozone

177 To further evaluate the long-term impact of climate change on ozone concentrations over China
178 from 1970 to 2023, we extended the framework of our proposed FEA method. The core idea of this
179 analysis is to isolate the influence of long-term meteorological variations on ozone, assuming fixed
180 anthropogenic emissions. Given the availability of relatively complete and continuous hourly ozone
181 observations and meteorological data across China from 2015 to 2023, we selected this period as the
182 basis for constructing emission baselines.

183 Following the modeling protocol described in the section Machine learning-based FEA, we trained
184  nine separate random forest models — each using a different year from 2015 to 2023 as an emissions
185 reference. Inputs included hourly ozone observations, key meteorological predictors, and time-related
186 variables (hour of day and month of year). These trained models were then applied to historical reanalysis
187  meteorology from 1970 to 2023 to simulate ozone trends under constant emissions. This yielded nine
188 independent ozone trajectories, each reflecting the influence of long-term meteorological variability
189 under a different fixed-emissions assumption.

190 While the choice of emission baseline may affect the absolute magnitude of simulated ozone, it does
191 not alter the primary objective: assessing the sensitivity of surface ozone to meteorological drivers over
192 multidecadal timescales (Lecceur et al., 2014; Leung et al., 2018; Wang et al., 2022¢). This approach
193 captures the climate-induced ozone signal while adopting the commonly used assumption that emissions
194 are not themselves influenced by climate change — a simplification consistent with prior attribution
195 studies (Dang and Liao, 2019; Leung et al., 2018; Shen et al., 2017; Wang et al., 2022¢). For comparison,
196  we also estimated the impact of anthropogenic emission changes on ozone concentrations during the
197 observational window of 2015-2023, using the same FEA methodology and the complete hourly dataset
198 for model training. This dual-track analysis enables a clear distinction between the contributions of

199 climate variability and emission mitigation to observed ozone trends.
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200 3 Results and Discussion

201 3.1 Spatiotemporal Evolution of Summertime Ozone (2013 - 2023)

202 Figure 1 presents the interannual variations in maximum daily 8-hour average (MDAS) ozone
203 concentrations during summertime (June—August) across China, with a focus on five key urban
204 agglomerations: Beijing-Tianjin-Hebei (BTH), Yangtze River Delta (YRD), Fenwei Plain (FWP),
205 Sichuan Basin (SCB), and Pearl River Delta (PRD). From 2013 to 2023, summertime ozone levels
206 displayed distinct temporal patterns across regions, reflecting the impact of successive national emission
207 control phases. During the first phase (2013-2017), nationwide MDAS ozone increased significantly (p
208 <0.01), rising from 95.5 to 118.0 pg m>. This growth was especially pronounced in the BTH and FWP
209  regions, where concentrations increased by 38% and 41%, respectively. In contrast, ozone increases were
210 more modest in the YRD (11%), SCB (15%), and PRD (16%) regions, respectively. These results were
211 consistent with the previous studies (Li et al., 2021; Liu and Wang, 2020a, b; Wang et al., 2023a).

212 In the second phase (2017-2020), corresponding to the implementation of more stringent emission
213 controls on NOy and VOCs emissions (Geng et al., 2024; Liu et al., 2023), a moderate national decrease
214 in MDAS ozone was observed, with concentrations declining to 109.0 pg m=. The regional declines
215 during this period were most notable in FWP (—16%) and YRD (—15%), while BTH (—6%), SCB (—11%),
216 and PRD (—4%) also showed reductions compared to their concentration peaks observed in 2017.
217 However, this downward trend did not persist. In the third phase (2020-2023), the MDAS8 ozone
218 rebounded, reaching 118.4 pgm™ in 2023 — comparable to its 2017 peak — with a particularly sharp
219 increase during the summer of 2022. From 2021 to 2023, MDAS ozone concentrations rose by 2.8 pg m™
220 inBTH, 3.1 pgm™in FWP, 16.1 pgm™in YRD, and 18.5 pg m™ in SCB, respectively.

221 Figure S1 further illustrates the spatiotemporal evolution of summertime MDAS ozone across 354
222 cities in China from 2013 to 2023. On average, 68% of cities exceeded the World Health Organization
223 (WHO) air quality guideline of 100.0 pg m= for the MDAS ozone. Elevated ozone levels were primarily
224 observed in densely populated and economically developed eastern regions, such as North China Plain.
225 Across the five major city clusters, the average ozone levels ranged from 89.4 to 152.8 pgm= —
226 substantially exceeding the 43.0 pg m= threshold associated with ecosystem productivity loss (Gong et

227 al., 2021), implying significant threats to both human and ecological health. Spatially, ozone hotspot
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regions expanded between 2013 and 2017 (Fig. S1 a-e), followed by contraction during 2018-2020 (Fig.
S1 f-i), reflecting initial policy effectiveness. However, this progress stalled from 2021. A sharp reversal
was observed in 2022, with widespread increases in MDAS8 ozone (Fig. S1 k), suggesting that the
influence of emerging meteorological extremes or evolving ozone photochemical regimes may be

counteracting the gains from emission reductions.
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Figure 1. Interannual trends of summertime MDAS ozone across China (2013-2023). Panel (a) illustrate the
seasonal variations of MDAS ozone during the summer months (June, July, and August) across 354 cities nationwide.
Panels (b-f) shows the average trend across five key regions in China: Beijing-Tianjin-Hebei (BTH), Fenwei Plain
(FWP), Yangtze River Delta (YRD), Sichuan Basin (SCB), and Pearl River Delta (PRD). The summer months are
defined according to meteorological seasonality, encompassing June, July, and August. In the violin plots, hollow
diamond markers denote the mean, while solid diamond markers represent the median. The Mann-Kendall test and
Sen's slope estimator were employed to assess the statistical significance and rate of change in the monthly average

MDAS ozone concentrations.

3.2 Anthropogenic drivers of ozone trends

To isolate the influence of anthropogenic emissions on summertime ozone variability, we
implemented a machine learning-based FEA framework (Sect. 2.2). This framework employs random

forest (RF) models to disentangle the respective contributions of emission changes and meteorological

10
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247 variability to observed ozone trends. As illustrated in Fig. 2, anthropogenic emissions were the dominant
248 driver of ozone increases during 2013 - 2017, contributing an average rise of 23.2+ 1.1 pg m= across
249 354 cities over China. The strongest regional increases occurred in the FWP and BTH, with contributions
250 of 45.0+£2.0 pgm™ and 42.1+2.0 pgm, respectively. In contrast, the PRD exhibited a smaller
251 increase (13.4+ 1.6 ug m=). These findings indicate that the emission control strategies during China’s
252 first phase of air quality control efforts, which primarily focused on reducing PM;s and haze,
253 inadvertently contributed to worsening ozone pollution by altering the atmospheric chemistry and
254 precursor balance (Zhang et al., 2019; Zheng et al., 2018). This finding is consistent with previous model-
255 based assessments using chemical transport models (Li et al., 2021; Wu et al., 2022), and supports the
256 reliability of the FEA framework in attributing observed ozone changes to underlying drivers.

257 In 2018, China launched its second-phase Clean Air Action Plan, which aimed to the coordinated
258 control of both PM, s and ozone by reducing NOx and VOCs emissions (Zhang et al., 2019; Zheng et al.,
259 2018). During this period (2017-2020), summertime ozone concentrations decreased substantially in
260 northern China. As shown in Fig. 2, the MDAS ozone declined by 10.5+2.0 pgm~ in BTH and
261 10.4+3.0 pgm= in FWP, with smaller but consistent declines in YRD (4.8 3.8 pgm=), SCB (—
262 2.8+2.4 ugm>), and PRD (—6.6+ 1.4 uygm) during 2017 — 2020. These changes underscore the
263 effectiveness of targeted precursor controls and align well with prior studies (Liu et al., 2023; Wang et
264 al., 2023a).

265 This period also overlapped with the COVID-19 pandemic, which occurred from January to April
266 2020, introduced an unprecedented, large-scale perturbation to human activity. The nationwide lockdown
267 led to dramatic declines in industrial production, energy consumption, and transportation (Shi and
268 Brasseur, 2020; Zheng et al., 2021). This provided a natural experiment to evaluate the short-term ozone
269  response to abrupt anthropogenic emission reductions. As shown in Fig. S4, from 2017 to 2020, the
270 MDAS ozone annual mean levels showed a slight national decline, but the pandemic led to an increase
271 in BTH, FWP, YRD, and SCB by +1.7 to +2.3 png m, while PRD experienced a decline. Further analysis
272 (Fig. S5) indicates that ~79% of cities saw increases in ozone during this period, with a national average
273 rise of 2.1+ 1.3 pgm™. These increases are consistent with suppressed NO titration and enhanced
274 photochemical ozone production under cleaner atmospheric conditions (Shi et al., 2021; Wang et al.,

275 2022a). In the post-pandemic period (2020-2023), the influence of anthropogenic emissions on

11
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summertime ozone trends became more subdued Emission-driven changes showed relatively small and
mixed contributions across all regions, ranging from —1.2 to +2.6 pg m= in BTH, —1.6 to +4.0 ug m™ in
FWP, 4.7 to +7.4 ug m2® in YRD, 3.6 to +3.0 ug m2 in SCB, and —3.8 to +7.7 ug m in PRD (Fig.
S6). These limited impacts suggest that the benefits of prior emission reduction efforts may have
plateaued, and that other drivers — particularly meteorological extremes — are becoming increasingly

prominent in shaping ozone variability.
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Figure 2. Anthropogenic and meteorological drivers of ozone trends from 2013 to 2023. Changes in summerime
MDAS ozone concentrations were decomposed into contributions from anthropogenic emissions and meteorological
variability using the FEA framework. Results reflect ensemble estimates based on multiple baseline years (2015—
2023) for emissions. Boxplots indicate the interquartile range, with values in parentheses denoting the 25th and 75th

percentiles across all baseline scenarios.

3.3 Ozone formation sensitivity and regime shifts

To diagnose the chemical sensitivity of ozone formation, we analyzed the spatial distributions of
tropospheric NO, and HCHO columns retrieved by TROPOMI during summer months from 2018 to
2023 (Fig. S7-S8). NO; concentrations displayed strong spatial gradients, with eastern China exhibiting

levels five times higher than the west — reflecting dense population centers and elevated anthropogenic

12
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294 NOx emissions. While NO; levels steadily declined over time, the summertime average NO, column
295 concentration in the North China Plain decreased from 4.13 x 10> molecules cm2 in 2018 to 3.85 x 10'°
296  molecules cm2 in 2023, HCHO concentrations remained relatively stable during 2018-2021. However,
297 a sharp increase in HCHO was observed in the Yangtze River Delta during the record-breaking heatwave
298 0f 2022, likely due to elevated biogenic and anthropogenic VOC emissions under extreme temperatures
299 (Qin et al., 2025; Tao et al., 2024). By 2023, HCHO levels returned to near-baseline, consistent with
300 cooler summer conditions.

301 To further characterize the photochemical regimes, we derived the threshold of the HCHO/NO; ratio
302 (FNR), a widely used proxy for ozone formation sensitivity (Jin and Holloway, 2015; Li et al., 2024; Ren
303 et al., 2022; Wang et al., 2021). As shown in Fig. 3, extensive VOC-limited and transition zones were
304 observed in major megacity clusters. most urbanized regions of China remained within the VOC-limited
305 throughout the study period, with the notable exception of the PRD, which was predominantly NOy-
306 limited or transitional regimes. This is consistent with previous studies, where VOC-limited regimes
307 primarily appeared in economically developed and densely populated urban areas, with transition zones
308 surrounding VOC-limited areas in large cities and suburbs (Li et al., 2024; Shen et al., 2021).

309 From 2018 to 2020, regime boundaries exhibited only modest changes. During this period, the
310 VOC-limited areas in the study region gradually decreased, while transition zones correspondingly
311 increased. Additionally, some areas initially classified as transitional regimes shifted to NOy-limited
312 regimes. The expansion of mixed and NOy-limited regimes was closely associated with significant NOy
313 emission reductions (Wang et al., 2023a). In 2021, the VOC-limited area expanded slightly across eastern
314 China. A more dramatic shift occurred in 2022, as extreme heat and elevated VOC levels drove
315 widespread transitions from VOC-limited to transitional or NOy-limited regimes, especially across the
316  YRD and surrounding regions.

317 Monthly regime evolution from 2020 to 2023 (Fig. S9) confirms that the most extensive regime
318 shifts occurred in August 2022 (Fig. S9i), coinciding with peak temperatures and FNR anomalies.
319 Notably, VOC-limited areas tended to be smaller in July and August compared to June, likely due to
320 increased VOC reactivity under higher temperatures (Fig. S9). However, major cities generally remained
321 VOC-limited, while adjacent suburban areas shifted dynamically between transitional and VOC-limited

322 regimes. In contrast, outer suburbs and rural regions were more frequently controlled by NOyx (Shen et

13
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al., 2021; Wang et al., 2021). Although VOC-limited regimes partially recovered in 2023, their spatial
extent remained smaller than in 2021, likely due to ongoing NOy emission reductions outpacing changes
in VOCs emissions, contributing to a structural shift in ozone formation chemistry. These findings
highlight the influence of climate-induced VOCs responses and precursor imbalance in driving ozone
formation regime shifts and complicating ozone mitigation efforts. While this influence has already
become prominent in the current phase, it is expected to intensify with the increasing frequency of

extreme weather events in the future.
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Figure 3. Ozone formation sensitivity regimes. The results of FNR analysis from June to August (2018-2023) are
presented, showing the spatiotemporal variation of ozone sensitivity in different regions. The colors in the map
represent the geographical distribution of VOC-limited, NOx-limited, and transitional ozone sensitivity zones. The

city locations within the five key regions of China are shown in Fig. S10.

3.4 Impact of meteorological variations on ozone
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337 Meteorological conditions directly and indirectly modulate surface ozone concentrations by
338 influencing photochemical reactions, vertical mixing, and dispersion processes (Li et al., 2019b; Li et al.,
339 2020). These effects exhibit strong regional and temporal heterogeneity across China. As shown in Fig.
340 2, during Phase I (2013-2017), meteorological contributions to summertime MDAS ozone remained
341 modest, ranging from -4.8 to +3.9 pg m=. In Phase II (2017-2020), notable ozone reductions attributable
342 to meteorology were observed - -14.4 £ 3 ugm=, -15.9 £3.8 pgm=, and -11.1 £ 2.4 pgm= in FWP,
343 YRD, and SCB, respectively. These reductions accounted for 58 + 12%, 77 + 18%, and 80 + 17% of the
344 total summertime MDAS ozone reduction during this phase. however, these impacts remained smaller
345 than those from emission controls in BTH and PRD. In contrast, during 2020-2023, ozone trends became
346 increasingly influenced by meteorological anomalies, particularly in 2022. That summer, extreme
347 heatwaves (Mallapaty, 2022; Wang et al., 2023b) led to sharp increases in MDAS ozone, contributing
348 20.8+3.6 pgm= in YRD and 22.1+3.2 pgm™ in SCB. In 2023, however, abundant summer rainfall
349 suppressed ozone formation, with MDAS ozone decreasing by —17.8 £2.3 pgm=in YRD and 9.7 + 3.3
350 pug m= in SCB. These declines correspond to year-on-year increases in rainfall of 102% and 35% in the
351 two regions, respectively (Fig. S11).

352 To further elucidate the dominant meteorological drivers of ozone variability, we examined Gini
353 importance (Nembrini et al., 2018; Wright and Ziegler, 2017) scores derived from the RF model across
354 18 predictor variables (Fig. S12). Temperature (7) and relative humidity (RH) emerged as the most
355 influential variables in the BTH, FWP, and SCB regions, while in the YRD, shortwave solar radiation
356 (SR), RH, and rainfall were dominant. These results suggest that ozone variability is governed by
357 complex meteorological interactions that vary regionally. For instance, rainfall is typically associated
358 with lower solar irradiance and increased cloud cover, both of which are unfavorable for photochemical
359 ozone production (Jacob and Winner, 2009; Shan et al., 2008). Moreover, the high importance of 7" and
360 SR in these regions indicates that surface ozone is highly sensitive to thermal conditions and
361 photochemical intensity (Yang et al., 2025). Elevated temperatures accelerate ozone precursor emissions
362 and reaction rates, while stronger solar radiation enhances photolysis and ozone formation potential (Qin
363 etal., 2025; Tao et al., 2024). In the PRD, ozone variability was more strongly influenced by temperature
364 and transport-related indices (such as meridional winds at different layers, etc.). This likely reflects the

365 region’s subtropical coastal climate, where frequent summer typhoon incursions from the Northwest
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366  Pacific modulate large-scale atmospheric transport (Chen et al., 2024; Wang et al., 2024a; Wang et al.,
367 2022b). These events may introduce strong horizontal advection and vertical mixing, thereby altering the
368 distribution and buildup of ozone precursors, and contributing significantly to the observed ozone
369  variability. As shown in Fig. S13, the correlations between ozone and key meteorological variables were
370 notably enhanced during heatwave (HW) periods. Specifically, ozone positively correlated with both T’
371 and SR, and negatively (or weakly) correlated with RH. During prolonged rainfall (PR) events, cities in
372 the Yangtze-Huaihe region showed the strongest RH—ozone anti-correlation (R <-0.7), likely driven by
373 the enhanced wet scavenging and reduced photochemistry (Fig. S14 a —c).

374 To quantify the individual contributions of meteorological variables, we applied SHAP (SHapley
375 Additive exPlanations) analysis to HW and PR events in the Yangtze-Huaihe region from 2015 to 2023
376 (Supporting Methods S3). As shown in Fig. S15 and Fig. S14 d, HW events were associated with strong
377 positive SHAP values in southeastern coastal cities, the YRD, and SCB — primarily driven by elevated
378 SR and 7. Indeed, mean SR during HW periods was significantly higher than during non-HW periods
379 (Fig. S16), amplifying photochemical ozone production potential. In contrast, PR events consistently
380  yielded negative SHAP contributions across all cities, mainly due to reduced sunlight and suppressed
381 precursor buildup. A multi-year comparison (Fig. 4) highlights the opposing effects of key meteorological
382 variables — including RH, 7, boundary layer height, total precipitation, and surface pressure — on MDAS
383 ozone. SR, RH, and T emerged as the most influential parameters, while total cloud cover and
384  meteorological transport playing secondary roles during HW episodes. The intensity of HW and PR
385 events modulated the magnitude of these effects. For instance, high-rainfall PR events in 2016 and 2020
386 yielded large negative SHAP contributions (-29.7 and —16.9 pg m>), mainly via RH-driven suppression.
387 Conversely, reduced rainfall in 2023 weakened the RH effect, though advection and vertical mixing still

388 contributed to ozone suppression (Fig. S17).
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389
390 Figure 4. Meteorological influences on predicted ozone concentrations under heatwave and rainy weather

391 conditions. (a) Differences in SHAP values (ASHAP) between heatwave and non-heatwave periods in the Yangtze-
16
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392 Huaihe region during summer 2022. (b) Differences in SHAP values (ASHAP) between prolonged rainfall periods
393 and non-prolonged rainfall periods in the same region from 2015 to 2023. Box plots show the distribution of ASHAP
394 across cities; the center line indicates the median, boxes denote the interquartile range (25th-75th percentiles), and
395 whisker line extends to one standard deviation.

396

397 3.5 Reshaping ozone trends in a warming climate

398 To assess the long-term influence of climate change on surface ozone concentrations, we applied
399 the FEA framework to simulate summertime ozone trends over the period 1970 — 2023. In this analysis,
400 anthropogenic emissions were held constant at their 2015 — 2023 summertime levels, while interannual
401 variations in meteorological variables were introduced using historical reanalysis data. This design
402 isolates the climate-driven component of ozone trends while assuming that emission trajectories are
403 independent of climate change — a simplification aligned with prior attribution frameworks (Wang et al.,
404 2022c). The impact of anthropogenic emission controls was estimated by comparing observed ozone
405 concentrations with FEA-predicted values during 2015 — 2023, thereby quantifying the residual effect of
406 emissions under fixed meteorology.

407 As shown in Fig. 5, under the 2015-2023 emission levels, climate change has exerted a statistically
408 significant (p < 0.05) positive influence on urban summertime ozone concentrations across China,
409  resulting in a nationwide increase of approximately 0.06 pgm=a' since 1970. All five major urban
410  regions displayed upward trends, with the most pronounced increase observed in the BTH and SCB at
411 0.12 pgm=a!. Spatial correlations between climate-driven ozone increases and temperature changes
412 (Fig. S18) further confirm that warming is the dominant contributor to long-term ozone enhancement. In
413 particular, the correlation coefficients between ozone trends and temperature anomalies reached 0.90
414 (BTH), 0.89 (FWP), 0.72 (YRD), and 0.93 (SCB), indicating a strong temperature dependence of
415 climate-induced ozone formation in these regions. The PRD showed a weaker correlation, likely due to
416 its unique subtropical maritime climate and higher humidity and cloud cover, which tend to suppress
417 photochemical ozone production(Yang et al., 2019).

418 These findings are consistent with previous projections that forecast an increase in high-ozone
419 events under future climate scenarios spanning 2020-2100 (Li et al., 2023). The historical record already
420  reflects this risk: despite significant increases in anthropogenic emissions driving ozone growth prior to

421 2018, national air quality improvement measures began to yield reductions thereafter. However, since
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2020, a rebound in ozone concentrations has emerged in several regions, suggesting that the climatic
penalty for ozone is beginning to offset the benefits of emission control. The intense heatwave of the
2022 summer significantly enhanced ozone formation and altered ozone sensitivity — shifting from a
VOC-limited region to a transition zone or NOy-limited region. Meanwhile, the reduction in
anthropogenic emissions of ozone precursor substances indirectly led to changes in ozone sensitivity,
thereby making anthropogenic emission reductions more effective in ozone control. However, overall,
the direct effects of climate change (i.e., increased ozone formation) far outweigh the indirect effects of
anthropogenic emission controls, indicating that the punitive effects of climate change on ozone will
become increasingly significant in the future. Taken together, these results underscore the dual challenges
of air quality management in a warming climate. Anthropogenic emission reductions remain critical, but
they may no longer suffice in isolation. As the warming-driven enhancement of ozone formation becomes
more prominent, China and other rapidly urbanizing regions will require adaptive and climate-resilient
air quality strategies — including dynamic precursor control, land-use planning, and extreme weather

early warning systems —to sustainably mitigate ozone pollution in the decades to come.
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Figure 5. Impact of climate change and emission controls on ozone trends. Left panels show ozone trends
attributable to long-term climate change from 1970 to 2023, simulated under fixed emission scenarios using the FEA
framework. Right panels depict ozone trends from 2015 to 2023, reflecting the impact of anthropogenic emission
controls. Each trajectory represents results based on a distinct emissions baseline year. Shaded grey areas indicate

the interquartile range (25th-75th percentiles), solid red lines denote trend estimates, and light red shading marks the
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442 5th-95th percentile confidence intervals. Statistical significance and trend slopes were assessed using the Mann-
443 Kendall test.
444

445 4 Conclusions and implications

446 China is confronted with the dual challenges of climate change and ozone pollution. Over the
447  past decade, summertime ozone concentrations across the country have exhibited complex
448 spatiotemporal patterns, reflecting the evolving interplay between anthropogenic emissions,
449  meteorological variability, and large-scale climate dynamics. In this study, we developed and
450  applied a machine learning-based FEA framework to disentangle and quantify the respective roles
451 of anthropogenic emissions and meteorological drivers in shaping ozone trends during 2013-2023.
452 With a national-level prediction uncertainty of approximately 6%, the FEA method provides a
453 computationally efficient and scalable tool for diagnosing atmospheric variability across large
454 spatial and temporal domains.

455 Our analysis revealed that increased anthropogenic precursor emissions were the dominant
456 driver of the sharp rise in summertime MDAS ozone concentrations during the first phase (2013—
457 2017), contributing an average increase of 23.2+ 1.1 ugm™. In contrast, during the second phase
458 (2018-2020), enhanced air quality regulations — particularly the synergistic control of NOyx and
459 VOCs — led to measurable reductions in MDAS ozone, with national-average declines of 4.6 + 1.5
460  pgm. These improvements were especially evident in regions such as BTH and FWP, where ozone
461 formation is highly sensitive to VOC levels. However, during the most recent period (2021-2023),
462 the impact of emission reductions diminished considerably, with regional ozone levels either
463 plateauing or rebounding. This stagnation underscores the urgent need for more targeted, region-
464  specific emission control strategies that address the shifting photochemical sensitivity of ozone
465  formation regimes.

466 Applying the SHAP method, we further quantified the impacts of extreme meteorological
467  events on ozone levels. Our results show that record-breaking heatwaves in 2022 contributed to
468  widespread ozone enhancements of up to 5.8 pg m=, while prolonged rainfall events — particularly

469 during the East Asian plum rain seasons — suppressed ozone production by as much as —15.2 pgm.
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470 These findings highlight the increasingly dominant role of short-term meteorological extremes in
471 modulating ozone air quality under a warming climate. In parallel, satellite-based FNR analysis
472 diagnostics revealed that most urban clusters in China remained in VOC-limited or transitional
473 regimes, except the PRD, which was largely NOy-limited. The 2022 heatwave triggered regime
474 shifts in regions such as the YRD, where rising VOCs emissions and elevated temperatures shifted
475 the photochemical regime toward NOy-limited. These results emphasize the importance of dynamic,
476 region-specific assessments of ozone formation sensitivity in the formulation of effective mitigation
477 strategies.

478 To assess the climate penalty on ozone, we extended the FEA framework to simulate long-term
479 trends from 1970 to 2023, by fixing emissions and allowing meteorological variables to evolve with
480  observed climate trends. Our findings show that climate change has contributed a significant upward
481 trend in urban summertime ozone, averaging 0.06 pgm= a”!, with particularly strong increases in
482 the BTH and SCB. Correlations between ozone and surface temperature were consistently high
483 (r=0.72-0.93) in BTH, FWP, YRD, and SCB, suggesting that warming has increasingly offset gains
484  from emission controls in recent years.

485 While the FEA framework provides a powerful diagnostic tool, some limitations remain. For
486  example, the historical simulations did not account for climate-driven changes in land use,
487  topography, or population density, which may introduce biases in long-term attribution (Zhu et al.,
488 2025). Future work could incorporate dynamic ancillary datasets and emissions scenarios to further
489 improve model performance. Overall, this study underscores the escalating influence of climate
490  extremes on ozone variability and the emerging limits of conventional emission control approaches.
491 Inthe face of continued warming, machine learning-based attribution frameworks such as FEA offer
492 a promising pathway for integrating meteorology, chemistry, and policy analysis. To achieve
493 sustained improvements in ozone air quality, future strategies must consider the compound effects
494  of anthropogenic emissions, short-term weather events, and long-term climate change, and adopt

495 adaptive, region-specific, and climate-resilient air quality management frameworks.

496
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